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Abstract— For hyperspectral image classification (HSIC),
labeling samples is challenging and expensive due to high
dimensionality and massive data, which limits the accuracy and
stability of classification. To alleviate this problem, a greedy
strategy guided graph self-attention network (GS-GraphSAT)
is proposed. First, a graph self-attention (GSA) mechanism
is designed by combining a multihead self-attention (MHSA)
mechanism with the graph attention network (GAT), which can
simultaneously consider the direct and indirect relationships
between nodes and deeply analyze the intrinsic characteristics
of nodes. Second, a multiattention fusion (MAF) module is
developed, which utilizes multiscale convolution kernels and
attention mechanisms to significantly enhance the network’s
ability to extract local features from images at the pixel level,
thereby further enriching the hierarchy and diversity of features.
Finally, a greedy training strategy (GTS) is proposed. During the
training process, GTS accurately determines the optimal time to
supplement samples by analyzing the changes in losses, thereby
achieving a significant improvement in network classification
performance with limited samples. Extensive experiments were
conducted on four challenging datasets. The results demon-
strate that the proposed method significantly outperforms other
state-of-the-art methods in terms of classification accuracy and
robustness. The performance improvement of overall accuracy
(OA) can reach up to 1.70% in Houston 2013 (HT). The
codes of this work will be available at https://github.com/Isee-
max/IEEE_TGRS_GS-GraphSAT for reproduction.

Index Terms— Convolutional neural network (CNN), few-
shot learning, graph attention network (GAT), greedy training
strategy (GTS), hyperspectral image classification (HSIC),
self-attention.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) integrate imaging
technology and spectral detection technology so that

each sample not only carries the spatial characteristics of the
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target but also contains dozens to hundreds of continuous
and subdivided spectral information, thereby achieving precise
characterization of land cover [1]. Due to its characteristic of
“spectral and spatial integration,” HSI is widely used in med-
ical diagnosis [2], [3], mineral exploration [4], environmental
monitoring [5], military reconnaissance [6], and other fields.
Research on HSI classification (HSIC) methods has, therefore,
attracted much attention in the field of remote sensing [7].

Early HSIC methods primarily focused on extracting fea-
ture information from spectral data. Notable methods include
logistic regression [8], random forest [9], support vector
machines [10], and sparse representation classification [11],
[12]. However, these methods exhibit certain limitations, pri-
marily due to an inadequate exploration of spatial features and
an excessive reliance on the prior knowledge of experts.

In recent years, deep learning, with its powerful feature
learning capabilities, has made significant breakthroughs in
multiple fields, which has also attracted the attention of
researchers in the remote sensing field [13], [14], [15], [16].
To address the semantic segmentation task in cross-city sce-
narios, Hong et al. [17] proposed a high-resolution domain
adaptation network (HighDAN). HighDAN can preserve spa-
tial topological structures and reduce the domain gap between
remote sensing images from different cities through adversarial
learning. In HSIC, research achievements based on convo-
lutional neural networks (CNNs) [18], Transformers [19],
[20], and graph neural networks (GNNs) [21], [22], [23]
have been the most remarkable. HSIs contain rich spectral
information and continuous spatial distribution of land cover.
Three-dimensional convolution kernels can simultaneously
consider both spatial and spectral information of the image,
thereby more comprehensively extracting features of HSIs.
Zhong et al. [24] proposed an end-to-end spectral–spatial
residual network (SSRN). SSRN introduces 3-D convolution
kernels on the basis of ResNet [25], thereby realizing the
joint extraction of spectral and spatial features. However,
3-D convolutional kernels are computationally expensive and
inefficient. Hence, Roy et al. [26] proposed a hybrid spectral
convolutional network (HybridSN). HybridSN leverages the
strengths of both 3-D and 2-D convolutional kernels, enabling
efficient and effective feature extraction in both spatial and
spectral dimensions. To alleviate the problem of insufficient
labeled data in HSI, Yao et al. [27] proposed a semiactive
CNN (SA-CNN). By combining active learning and superpixel
segmentation, SA-CNNs can effectively select informative
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samples and generate pseudolabels for unlabeled data, thus
improving the model’s performance.

Attention mechanism is a computational mechanism that
mimics human attention by selectively focusing on infor-
mative regions of the input [28], [29], [30], [31], [32],
[33]. Cui et al. [34] proposed a dual-triple attention network
(DTAN) for HSIC with limited training samples. DTAN uti-
lizes a dual attention mechanism to capture the interactions
between spatial and spectral information. Liang et al. [35]
proposed a multiscale spectral–spatial attention network
(MOCNN). MOCNN employs multiscale 2-D octave convo-
lution and 3-D DenseNet [36] to extract spatial and spectral
features, respectively, and enhances network performance
through an attention mechanism. Shi et al. [37] proposed
an expansion convolution network (ECNet). ECNet utilizes
a similar feedback block to enhance feature representation
and leverages an attention mechanism to distinguish the
importance of different features. Bai et al. [38] proposed a
method based on adaptive subspaces classifier and feature
transformation (SSFT). SSFT alleviates the problem of limited
samples through local channel attention (CA) and feature
transformation modules. Wu et al. [39] proposed a new
framework called cross-channel reconstruction (CCR) Net for
multimodal remote sensing data classification. This framework
is based on CNNs and introduces an advanced CCR module
to achieve effective fusion of data from different sources.
Chen et al. [40] proposed an end-to-end grid network (GNet)
that effectively identifies discriminative features by balancing
the extraction of spectral and spatial features.

While CNNs have been widely used in HSI, their per-
formance is limited by the receptive field of convolutional
kernels. Transformers, on the other hand, have shown great
potential in capturing long-range dependencies in sequential
data, as demonstrated by their success in natural language
processing (NLP). Researchers have designed a series of
Transformer variants for visual tasks, such as vision trans-
former (ViT) and Swin Transformer [41], [42], [43], to address
the characteristics of image data. These models effectively
capture global features in images by dividing images into
multiple patches and feeding these patches as sequences
to the Transformer. Hong et al. [44] proposed a Spec-
tralFormer (SF) for HSIC. SF captures local details by
learning the relationships between adjacent bands within a
group and employs cross-layer skip connections to prop-
agate memory information. Sun et al. [45] proposed a
spectral–spatial feature tokenization Transformer (SSFTT).
SSFTT utilizes convolutional layers to extract low-level fea-
tures, which are then transformed into semantic tokens and
modeled by a Transformer for high-level semantic features.
Shi et al. [46] proposed a dual-branch multiscale transformer
network (DBMST). DBMST integrates multiscale feature
extraction and Transformer-based global feature extraction,
achieving better classification performance.

Recently, GNNs have proven to be a promising framework
in the research of non-Euclidean dependencies in HSIs [47],
[48], [49]. In these methods, each pixel and its local neigh-
borhood are represented as a node in a graph, and the
edges between nodes are determined by spatial and spectral

relationships. Liu et al. [50] proposed a CNN-enhanced graph
convolutional network (CEGCN). CEGCN leverages CNNs to
extract local pixel-level features, which are then fused with
the features of large-scale irregular regions modeled by a
graph convolutional network (GCN). A fast dynamic GCN
and CNN parallel network (FDGC) has been proposed [51].
FDGC combines dynamic GCNs and CNNs, using multiple
branches to extract different types of features in parallel.
Ding et al. [52] proposed a semisupervised locality-preserving
dense GNN with autoregressive moving average (ARMA) fil-
ters and context-aware learning (DARMA-CAL). This method
employs ARMA filters for graph convolution operations,
enabling it to better capture global structural information.
Zhou et al. [53] proposed an attention multihop graph and mul-
tiscale convolutional fusion network (AMGCFN). In addition
to local information extracted by CNNs, AMGCFN aggregates
multihop contextual information by applying multihop graphs
at different levels. However, GCNs have limitations in han-
dling directed graphs. To address this issue, Dong et al. [54]
proposed a weighted feature fusion of CNN and graph
attention network (WFCG). WFCG combines the strengths
of CNNs and graph attention networks (GATs), making
the model completely independent of the graph structure.
Shi et al. [55] proposed a CNN and enhanced-GAT fusion
network (CEGAT). CEGAT captures important node features
and suppresses redundant features by calculating attention
coefficients between node vectors. Furthermore, the low repre-
sentation capability of the original HSI limits the accuracy of
superpixel segmentation. To address this issue, Chen et al. [56]
proposed a local aggregation and global attention network
(LAGAN). LAGAN designs a spectral-induced alignment
superpixel segmentation strategy that can simultaneously uti-
lize both original and deep abstract spectral features for
superpixel segmentation, resulting in more accurate pixel-to-
region assignments.

Although the above methods have achieved effective clas-
sification performance, there are still some problems.

1) Sample limitation is a long-standing issue in HSIC. The
high dimensionality and large volume of HSI data make it
extremely costly to label, while deep learning models require
a massive amount of labeled data for training, leading to a
shortage of training samples.

2) The attention mechanism employed in GAT is inherently
localized, focusing solely on direct neighbors. In HSIC tasks,
this limitation limits the model’s ability to utilize the rich and
potential long-term dependencies in the data, thereby hindering
the improvement of classification performance.

To alleviate the above problems, a greedy strategy guided
graph self-attention network (GS-GraphSAT) is proposed.
To enhance information propagation among nodes, a graph
self-attention (GSA) mechanism is designed. GSA effectively
combines the advantages of multihead self-attention (MHSA)
and GAT, not only fully capturing the relationships between
directly connected nodes but also conducting an in-depth
exploration of the connections between non-directly connected
nodes with potential correlations. To fully capture pixel-level
local features, a multiattention fusion (MAF) module is con-
structed. MAF applies convolutional kernels of different sizes
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at multiple scales to extract local features of the image and
fuses the weighted features of multiple attention mechanisms,
thereby more comprehensively capturing and enhancing the
local feature information of the image at the pixel level.
To alleviate the problem of limited samples in HSI, a greedy
training strategy (GTS) is proposed. GTS monitors the changes
in training loss to determine when to add new samples,
thereby effectively improving the classification accuracy of the
model even when the number of samples is limited. Extensive
experiments on four public datasets indicate that the proposed
GS-GraphSAT outperforms some state-of-the-art methods.

The main contributions of this article are given as follows.
1) A novel GSA mechanism is introduced to facilitate

information propagation within GNNs. GSA leverages the
strengths of MHSA and GAT, allowing for the modeling of
both local and nonlocal dependencies among nodes.

2) A novel MAF module is introduced to enhance the extrac-
tion of pixel-level local features. MAF leverages a multiscale
convolutional architecture combined with multiple attention
mechanisms to effectively capture and fuse local features from
different receptive fields.

3) To mitigate the issue of limited samples in HSI, a novel
GTS is proposed. GTS employs a dynamic sample selection
approach based on training loss, enabling the model to learn
more effectively from a small dataset.

The remaining part of this article is organized as follows.
Section II introduces the proposed method in detail. Section III
first describes the dataset and the parameter settings of the
experiment, followed by experimental verification of the pro-
posed method. Section IV presents the conclusion and future
work.

II. METHODOLOGY

We denote HSIs as X ∈ RH×W×B , where H, W , and B,
respectively, represent the height, width, and spectral band
number of HSI. Partition the original dataset X into three
subsets: training set Xtr ∈ RH×W×B , validation set Xva ∈

RH×W×B , and test set Xte ∈ RH×W×B .

A. Overall Structure

The overall structure of the proposed GS-GraphSAT is
shown in Fig. 1. The network includes five parts: data pre-
processing, superpixel-based GSA branch, pixel-based MAF
branch, fusion classification, and GTS.

The initial step involves data preprocessing. Graph nodes
are constructed from the input HSIs data X. To reduce com-
putational complexity, principal component analysis (PCA)
[57] is employed to extract the most informative bands of
the image. Subsequently, the dimensionality-reduced data are
segmented into superpixels using the simple linear iterative
clustering (SLIC) algorithm [58]. Similar and adjacent pixels
are clustered into superpixels, forming a relationship matrix
G and an adjacency matrix H, where N denotes the number
of superpixels. The construction of these matrices is detailed
in (1) and (2)

Gi, j =

{
1, if X̄ i ∈ S j

0, otherwise
X̄ = Flatten(X) (1)

where Gi, j denotes the value at (i , j) in the relationship
matrix, reflecting the mapping between pixels and superpixels.
The matrix’s rows represent pixels, and its columns represent
superpixels. Flatten(·) denotes the flattening operation. X̄
denotes the 1-D vector resulting from flattening the spatial
dimension, and S denotes superpixels, which are used to
construct a relationship matrix in conjunction with X̄

Hi, j =

{
1, if Si and S j are adjancent
0, otherwise

(2)

where Hi, j denotes the value of the adjacency matrix at
(i , j), reflecting the connectivity between superpixel nodes.
Both the rows and columns of the matrix denote superpixels,
with the elements indicating whether there is a connection
between the respective nodes. The adjacency matrix facilitates
the quick search of connection relationships between nodes.

The pixel inputs to the MAF branch undergo a two-step
processing. First, a pointwise convolution is employed to
reduce the dimensionality of the spectral data. Second, another
pointwise convolution is utilized to refine the data, introducing
nonlinearity to the reduced-dimensional features. Finally, the
output Xcnn ∈ RH×W×L is obtained, where L denotes the
length of the processed spectral sequence. This process can
be expressed as

Xcnn = PW(PW(X)) (3)

where PW(·) represents a pointwise convolution block, includ-
ing batch regularization, convolution, and rectified linear unit
(ReLU) activation function.

The process of pointwise convolution can be expressed as

Xout = Fτ (FBN(X) ∗ w + b)) (4)

where FBN(·) represents a batch normalization layer, Fτ (·)

represents the ReLU activation function, ∗ represents the
convolution operator, w represents the weights of the convo-
lutional kernel, and b represents the bias.

The second part is a GSA branch based on superpixels.
At the beginning of this stage, pixel data need to be trans-
formed into graph node data. This process can be represented
as

V = Encode(X; G) = ĜT
· Flatten(X) (5)

where V denotes the set of graph nodes composed of
superpixels. ĜT denotes the relationship matrix after column
regularization and transposition; the Encode(·) converts pixel
data X into graph node data, resulting in the transformed graph
representation G ∈ RN×L . Subsequently, the graph nodes
undergo multiple processes through the GSA layer to yield
a weighted graph. Finally, this weighted graph is transformed
into pixel data. This process can be represented as

X′
= Decode(V; G) = Reshape(G · V) (6)

where Decode(·) is used to decode the node data into pixel
data, while Reshape(·) is utilized to restore the spatial dimen-
sions of flattened data.

The third part is a pixel-based MAF branch. Through
the proposed MAF, the fine-grained features lacking in the
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Fig. 1. Overall structure of the proposed GS-GraphSAT. The GSA branch is employed to capture coarse-grained local features, while the MAF branch is
designed to extract fine-grained local features. The GTS alleviates the sample limitation problem by improving sample utilization. The detailed structures of
GSA and MAF will be unfolded in Figs. 2 and 3.

graph branch are supplemented by processing with multiscale
convolution kernels and attention mechanisms. The fourth
part is the fusion classification. In this stage, the features
processed by the graph branch and the convolution branch
are weighted and fused, and the result is input into a softmax
classifier to complete the classification task. This process can
be represented as

Xout = α · X′
+ (1 − α) · X′′ (7)

Soft max((Xout)i ) =
exp((Xout)i )∑
j exp

(
(Xout) j

) (8)

where X′ and X′′ represent the processed features by the
graph branch and the convolution branch, respectively. Xout
represents the result of the fusion of the two branches. α

represents the weight coefficient of the adaptive change.
The final part is the GTS. This stage runs throughout the

entire training process, enabling the network to adaptively
determine the optimal time to supplement samples to the train-
ing set, thereby more effectively utilizing sample resources and
optimizing training effectiveness.

B. GSA Mechanism

GAT can handle graphs with arbitrary structures, but they
primarily focus on neighboring nodes, capturing local depen-
dencies. This means that for non-directly connected nodes
with potential correlations, the propagation of information
between them is limited. To alleviate this problem, a novel
GSA mechanism is proposed, and its detailed structure is
shown in Fig. 2.

Specifically, the self-attention part initiates by applying a
mapping operation to the graph G, generating three multihead
graph representations denoted as Gq ,Gk,Gv ∈ Rh×N×d . Here,
L = h × d, h represents the number of heads, and d represents
the length of the sequence after multihead segmentation.

Subsequently, a dot product is performed between Gq and
GT

k . The results are scaled by 1/(dk)
1/2 and normalized using a

softmax function to produce the attention scores. The resulting
attention map is denoted as M ∈ Rh×N×N .

Following this, the attention map M is multiplied elemen-
twise with Gv to produce the weighted node features for
a single attention head, denoted as GSA ∈ Rh×N×d . This
process is replicated for multiple attention heads in parallel,
and the resulting features are concatenated to form the final
representation G ′

∈ RN×L .
This process can be represented as

GSA = Attention
(
Gq ,Gk,Gv

)
= Soft max

(
Gq · GT

k
√

dk

)
· Gv (9)

G ′
= Multihead

(
Gq ,Gk,Gv

)
= ||

h
i GSAi · W (10)

where dk represents the dimension of Gk, ||(·) represents con-
catenate operations, and W represents the parameter matrix.
Moreover, it is necessary to perform the accumulation oper-
ation on the attention map M to obtain the attention map
M′

∈ RN×N for the utilization of the graph attention part.
This process can be represented as

M′
=

h∑
i=1

Mi . (11)
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Fig. 2. Structure of GSA (“Activation” represents utilizing adjacency matrix to activate attention maps, and “Accumulation” represents accumulating attention
maps from MHSA).

Moving on to the graph attention part. First, a linear trans-
formation is applied to the nodes set V = {v⃗1, v⃗2, . . . , v⃗n}.
Subsequently, we compute the attention coefficients using a
shared attention mechanism. This process can be represented
as

ei, j = A
(
Wv⃗i , Wv⃗ j

)
(12)

where ei, j denotes the attention coefficient, which can denote
the correlation between node i and node j . W represents the
parameter matrix, and A(·) represents the shared attention
mechanism. Afterward, the softmax function is utilized to
normalize the attention coefficients into scores. This process
can be expressed as

M′′
= Soft max

(
ei, j

)
=

exp
(
ei, j

)∑
k∈Ni

exp
(
ei,k

) . (13)

Then, the attention maps M′′ and M′ obtained from the
self-attention part are combined through elementwise addition.
The fused result is then modulated by the adjacency matrix H
to obtain the final attention map, denoted as M′′′

∈ RN×N .
Specifically, for node positions with connections, retain the

fused results; otherwise, set the value of that position to zero.
This process can be represented as

M′′′
=

{
M′

i, j + M′′
i, j , If there is a connection at Hi, j

0, otherwise.

(14)

Next, M′′′ is multiplied with the original graph G to obtain
the weighted graph of the graph attention part, denoted as
G ′′

∈ RN×L . Finally, the weighted feature graphs G ′ and G ′′

of the two attention parts are fused to obtain the final graph,
denoted as Gout ∈ RN×L . This process can be represented as{

G ′′
= M′′′

· G
Gout = G ′

+ G ′′.
(15)

To ensure a stable fusion of the weighted feature maps from
MHSA and GAT, a multihead mechanism is applied to the
first GSA layer. Specifically, the first GSA layer is executed
independently K times, and the results are then concatenated.
In the second GSA layer, a single-layer structure was adopted.
The final graph was decoded by the Decode(·) function and
input into the classifier. This process can be expressed as

G = ||
K
k=1σr

(
Goutk

)
. (16)

By combining the multihead attention mechanism of MHSA
and the graph attention mechanism of GAT, GSA comprehen-
sively obtains the correlation information between nodes and
strengthens the original attention graph, effectively improving
the classification performance of the model.

C. MAF Module

The local features extracted from graph nodes con-
structed based on superpixels mainly reflect the coarse-grained
information of the image. Without the supplementation of
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Fig. 3. Structure of MAF, with CA in the lower right and SE attention in the lower left.

fine-grained information, the classification performance of the
model will be significantly affected. To address the above
problem, an MAF module is proposed, as shown in Fig. 3.

First, the module utilizes CA to weight the spectral dimen-
sion of pixel inputs, enabling the network to focus on
discriminative features. This process can be expressed as

Mi j =
exp

(
X i · X j

)∑N
i=1 exp

(
X i · X j

) (17)

X ′

j = η ·

N∑
i=1

(
Mi j · X j

)
+ X j (18)

where X ′
j represents the weighted data processed by CA and

η represents a learnable coefficient preset to 0.
Following this, the weighted data undergo processing by two

convolutional branches with varying receptive fields. Pointwise
convolution is adopted to fuse information across channels,
facilitating interchannel communication. Subsequently, depth-
wise convolution is utilized to capture spatial features at
multiple scales, with each channel being processed indepen-
dently to extract distinct and salient features. This process can
be expressed as{

X1 = DW1×1(PW(CA(Xcnn)))

X2 = DW5×5(PW(CA(Xcnn)))
(19)

where DW1×1(·) represents the depthwise convolution block
with a kernel size set to 1. DW5×5(·) represents the depthwise
convolution block with a kernel size set to 5. CA(·) represents
the CA.

Subsequently, the outputs X1 and X2 from the two branches
are further weighted using the squeeze-and-excitation network

(SE) module shown in Fig. 3. Meanwhile, X1 and X2 are fused
and reweighted by the CA module. Both SE and CA modules
assign weights but focus on different features. The result of
the second CA weighting is used as shared weights and fused
with the features from both branches after SE processing. This
process enables the network to more accurately capture local
image features and distinguish features of varying importance.
This process can be expressed as

SE(X) = Linear(Fτ (Linear(Avg(X)))) · X (20){
X3 = SE(X1) + CA(X1 + X2)

X4 = SE(X2) + CA(X1 + X2)
(21)

where Avg(·) represents average pooling, Linear(·) repre-
sents linear mapping, and Sigmoid(·) represents activation
function. Next, pointwise convolutions are utilized again to
integrate information from different channels in X3 and X4,
and large-sized depthwise convolution blocks are employed to
extract local feature information, resulting in the outputs X5
and X6.

Compared to the previous convolutional blocks, these two
convolutional blocks can capture more local details, further
enhancing the representational capacity of features. Subse-
quently, X3 and X4 are fused and fed into the CA module for
a third weighting to boost the weights of key features. Finally,
the weighted output is fused with X5 and X6 to obtain the
final feature representation. This process can be expressed as

X5 = DW3×3(PW(X3))

X6 = DW7×7(PW(X4))

Xout = X5 + X6 + CA(X5 + X6)

(22)
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Algorithm 1 Implementation Process of GTS
Input: the training set Xtr ∈ RH×W×B , validation set Xva ∈ RH×W×B , landcover labels Y ∈ RH×W

Output: the optimal network model.
1. Set the training epochs E , pre-convergence accuracy O A′, minimum loss Lossmin , loss list L .
2. Set the count of consecutive increases in losses required to trigger GTS N ′.
3. Set the count of current consecutive increases in lossesN .
4. Set the total number of supplementary samples Num.
5. Set the number of sample supplements T ′, and the current number of supplements T .
6. Initialize the network.
7. for i to E do
8. Training the Network;
9. Perform validation inference on the current trained model;
10. If L i ≤ Lossmin

Save the model of that epoch and update the Lossmin .
11. If the current validation accuracy is greater than O A′ and the T ≤ T ′

Mark that the current network is in a “pre-convergence” state.
Otherwise, set N to 0 and perform step 8.

12. If the L i−1 ≤ L i

Update the N ;
Update the L i = L i−1;

Otherwise, perform step 8.
13. If N is equal to N ′

Select the maximum loss sample for a batch from Xva, with a sample size of Num/T ′;
Supplement the batch of samples to the Xtr;
Update the T ;

Otherwise, perform step 8.
14. end for

where DW3×3(·) represents the depthwise convolution block
with a kernel size set to 3; DW7×7(·) represents the depthwise
convolution block with a kernel size set to 7.

By integrating a multiscale convolutional architecture with
multiple attention mechanisms, MAF effectively extracts local
features from diverse receptive fields, thus compensating for
the graph branch’s limited ability to capture fine-grained
information.

D. Greedy Training Strategy

Limited sample size poses a significant challenge in HSIC.
Due to the scarcity of available labeled samples, the training
process of classifiers often fails to obtain sufficient data
support, resulting in suboptimal performance, particularly in
terms of accuracy and robustness. Therefore, optimizing the
utilization of limited samples has become a critical research
direction in this field.

To address the above problem, a GTS is proposed in
this article. The detailed workflow of GTS is shown in
Algorithm 1. During the data preparation process, the dataset
is generally divided into the training set Xtr, the validation set
Xva, and the test set Xte. The training set Xtr is used to train the
model; the validation set Xva is used to evaluate the perfor-
mance of the model and help determine whether the model
is overfitting; the test set Xte is used to evaluate the final
performance of the model. Unlike the previous approach of
setting the number of samples in the training and validation
sets to be equal, GTS further subdivides the training set.
In the initial stage of training, only a part of the samples

in the training set are used for network training, while the
remaining number of samples is temporarily merged with the
validation set. As the training progresses, these numbers of
samples will be remerged into the training set in batches at
appropriate times to achieve efficient utilization of sample
resources and continuous improvement of model performance.
The validation set plays an important role in evaluating model
performance. Although not directly involved in training, it can
help the model filter out the sample with the highest loss.
These samples often contain feature information that the model
has not yet understood. If the model can successfully under-
stand the feature information, its ability to interpret features
will be significantly improved, thereby optimizing the overall
performance of the model.

During the training process of the model, when the network
reaches an overall accuracy (OA) of 60% or above for the first
time, it is considered to have reached a “pre-convergence”
state, indicating that the model has initially acquired the
ability to understand features and process information. At this
moment, GTS begins to analyze the loss changes during
the model training process to accurately determine when
to reintegrate the remaining number of samples into the
training set. Specifically, when the loss of the model does
not decrease continuously for n epochs, it means that its
classification performance has approached a maximum point,
indicating that the model has entered a convergence state.
Afterward, a predetermined number of maximum loss samples
are selected through the validation process, and these samples
are merged back into the training set. The newly merged
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samples may lead to significant fluctuations in the loss during
the following epochs. However, as the model converges again,
its classification performance will be further improved.

During the training process guided by GTS, the loss of
the model exhibits a periodic and fluctuating downward
trend, incorporating cycles of both increases and decreases.
Whenever new samples are merged into the training set, the
ability of the model to understand feature information will be
further improved. After all batches of samples are merged,
the classification performance of the model will also reach
its optimal state. This process not only expands the training
data of the model but also enhances the model’s ability to
understand various features in the dataset, thereby improving
the overall performance of the model.

The appropriate timing for sample merging can be subdi-
vided into two situations. The first one is to supplement new
samples to the training set in a timely manner when the model
reaches a “pre-convergence” state for the first time, which can
accelerate the convergence of the model and quickly approach
the optimal performance level. Another is that when the
model has already achieved an optimal state, the classification
performance tends to stabilize, and it is difficult to have a
significant improvement if there is no addition of new samples.
Therefore, continuously inputting new samples to the network
in this stage can enable it to learn more feature information,
thus further improving its classification performance.

III. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, the effectiveness of the proposed method will
be verified. First, the datasets, hardware configuration, param-
eter settings, and comparison methods used in the experiment
are introduced. Then, the proposed method is comprehen-
sively tested and analyzed from multiple perspectives such
as ablation experiments, quantitative evaluation, and visual
evaluation.

A. Dataset Description

To verify the performance of the proposed method, suffi-
cient experiments were conducted on four publicly available
datasets, including Indian Pines (IP), Pavia University (UP),
WHU-Hi-LongKou (LK), and Houston 2013 (HT).

The IP dataset is an HSI captured through airborne visi-
ble/infrared imaging spectrometer sensor (AVIRIS) in Indiana,
USA, in June 1992, with a size of 145 × 145 pixels, used
for early image classification research. Its wavelength range
covers 400–2500 nm, with a spatial resolution of 20 m, and
includes 220 bands. However, due to the presence of absorbent
bands, the actual number of bands used for training has been
reduced to 200. This dataset covers 16 types of land cover,
including corn, oats, wheat, and so on, with a total of 21
025 pixels, of which 10 249 are land cover pixels and the rest
are background pixels.

The UP dataset is an HSI captured through ROSIS-03 in
Pavia, Italy, in 2003. It covers 115 bands in the wavelength
range of 0.43–0.86 µm, with a spatial resolution of 1.3 m.
However, due to the influence of noise, 103 bands are usually
used. This dataset contains 610 × 340 pixels, with a total

Fig. 4. Sample distribution on the IP dataset. (a)–(d) Pseudocolor map,
training set, validation set, and test set.

Fig. 5. Sample distribution on the UP dataset. (a)–(d) Pseudocolor map,
training set, validation set, and test set.

of 2 247 400 pixels, but only 42 776 pixels represent features,
covering nine types of features such as trees and asphalt roads.

The LK dataset is HSI collected on July 17, 2018,
in Longkou Town, Hubei Province, China, using hyperspectral
imaging sensors carried by DJI Matrice 600 Pro drones. The
research area includes nine crops, such as corn, cotton, narrow-
leaf soybeans, and rice. The image size is 550 × 400 pixels,
with a spatial resolution of approximately 0.463 m, covering
wavelengths ranging from 400 to 1000 nm and containing
270 bands.

The HT dataset is an HSI collected in Houston, Texas, and
surrounding rural areas in the United States, using the CASI-
1500 sensor. The research area includes 15 ground object
categories, such as trees, soil, commercial, and highway. The
image size is 349 × 1905 pixels, with a spatial resolution of
2.5 m, covering a wavelength range from 364 to 1046 nm and
containing 144 bands.

Tables I and II list the main land cover categories involved
in the four research scenarios mentioned above, as well as
the number of training, validation, and testing samples used
for classification tasks. Correspondingly, Figs. 4–7 show the
spatial distribution of pseudocolor map, training, validation,
and testing samples for four research scenarios. To facilitate
the observation of the spatial distribution of the sample,
we perform scaling on the pixels.

B. Experimental Configuration

1) Hardware Configuration: The proposed method is
implemented in PyTorch 1.10.1 and Python 3.7.0 envi-
ronments. The hardware configuration consists of an Intel
Core i9-9900K CPU with 128-GB RAM and an NVIDIA
RTX 3090 GPU. To avoid the randomness of the results,
the average of ten independent experiments was taken for all
experimental results.
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TABLE I
LAND COVER CLASSES OF THE IP AND UP DATASETS, ALONG WITH THE NUMBER OF TRAINING,

VALIDATION, AND TESTING SAMPLES FOR EACH CLASS

TABLE II
LAND COVER CLASSES OF THE LONGKOU AND HT DATASETS, ALONG WITH THE NUMBER OF TRAINING,

VALIDATION, AND TESTING SAMPLES FOR EACH CLASS

2) Evaluation Metric: Three common evaluation metrics
were adopted to comprehensively evaluate the classification

performance of each model, namely, OA, average accuracy
(AA), and kappa coefficient (κ × 100).
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Fig. 6. Sample distribution on the Longkou dataset. (a)–(d) Pseudocolor
map, training set, validation set, and test set.

Fig. 7. Sample distribution on the HT dataset. (a)–(d) Pseudocolor map,
training set, validation set, and test set.

Fig. 8. Comparison of different learning rates on four datasets.

3) Parameter Configuration: To ensure a fair evaluation of
the proposed methods, all comparison methods adopted their
recommended optimal parameter configurations. We use the
Adam optimizer to train our network, with training epochs
set at 500. The learning rates of the IP and LK datasets
were set to 1e-3, and the learning rates of the UP and HT
datasets were set to 5e-4 (see Fig. 8). The optimal superpixel
segmentation scales for the IP, UP, and LK datasets were 100,
400, and 300, respectively (see Table III). Considering the
issue of memory overflow that tends to occur with graph-based
methods when applying the HT dataset at segmentation scales
ranging from 100 to 500, we uniformly set the segmentation
scale to 600 for this dataset in our experiments. Fig. 9

TABLE III
DIFFERENT SEGMENTATION SCALES

Fig. 9. Comparison of the number of consecutive increases in losses required
to trigger GTS in different datasets.

illustrates the number of consecutive loss increases needed
to trigger GTS. The optimal settings for the IP, UP, LK, and
HT datasets were 7, 5, 7, and 9, respectively.

4) Comparison With State-of-the-Art Methods: Several rep-
resentative methods are selected for the following comparison
experiments. They are HybridSN [26], DTAN [34], GNet [40],
SF [44], SSFTT [45], CEGCN [50], FDGC [51], WFCG [54],
and AMGCFN [53]. The innovative points in the structures of
these comparative methods are given as follows.

1) HybridSN incorporates two residual blocks: one lever-
aging 3-D convolutions to capture both spectral and spatial
features, and another employing 2-D convolution to extract
spatial features.

2) DTAN consists of two branches. The spectral branch
embeds the efficient CA (ECA) module into the DenseNet to
realize cross-channel interaction. Afterward, the channel triple
attention module is used to obtain the final spectral feature
map. The spatial branch has a structure similar to the spectral
branch, but no longer uses ECA modules.

3) GNet adopts a structure of multiple different grids in
its design, each consisting of three 3 × 3 × 1 sized 3-D
convolution kernels on four edges and one 1 × 1 × 3 sized
3-D convolution kernel. This design allows spectral and spatial
features to be extracted twice at different depth levels, thereby
increasing the diversity of the model.

4) SF consists of five layers of Transformer encoders. Cross-
layer adaptive fusion (CAF) modules are employed between
nonadjacent encoders to propagate information from shallow
layers to deeper ones. In addition, the network adopts a
groupwise spectral embedding strategy for its input.

Authorized licensed use limited to: Harbin Engineering Univ Library. Downloaded on December 07,2024 at 01:33:49 UTC from IEEE Xplore.  Restrictions apply. 



ZHU et al.: GREEDY STRATEGY GUIDED GRAPH SELF-ATTENTION NETWORK FOR FEW-SHOT HSIC 5539620

TABLE IV
ABLATION EXPERIMENTS

5) SSFTT extracts shallow spatial–spectral features using
3-D and 2-D convolutional kernels. Then, it converts these
shallow features into high-level semantic features through a
Gaussian distribution weighted tokenization module. Finally,
Transformer encoders are used to learn the relationships
between high-level semantic features.

6) CEGCN consists of two branches. One branch employs
GCN to extract coarse-grained information based on super-
pixels, while the other branch utilizes depthwise separable
convolution to extract fine-grained information based on pix-
els. The combination of GCN and CNN was first proposed by
CEGCN.

7) FDGC consists of three branches. Two branches employ
convolution to extract channel information at different scales,
while the third branch utilizes dynamic GCN to adaptively
capture topological structure information.

8) WFCG adopts a similar architecture to CEGCN but
replaces the GCN with a GAT to address the challenges
of handling directed graphs. Moreover, WFCG integrates an
attention mechanism into the convolutional branch to enable
the model to focus on discriminative features.

9) AMGCFN consists of two branches. One branch captures
pixel-level features using multiscale convolutional kernels; the
other branch forms a cascade network by stacking multihop
GCNs to effectively extract structural information. Finally,
a cross-attention fusion module is employed to obtain dis-
criminative features for classification.

C. Ablation Experiments

In this section, we validate the effectiveness of the three
modules in the proposed method. The experimental data
adopts OA as the evaluation metric, and the results are shown
in Table IV. The experimental results demonstrate that the
GSA and MAF branches exhibit distinct emphases in feature
extraction, and their integration significantly enhances the
classification performance of the model.

Specifically, Cases 1 and 2 showcase the individual effects
of the GSA and MAF branches. The GSA branch primarily
extracts coarse-grained information from images, focusing on
overall features and trends, which is suitable for capturing
global semantics. However, due to this focus, the features
extracted by GSA overlook substantial details, thus limiting
its performance. In contrast, the MAF branch effectively

extracts local features through convolutional kernels, providing
a fine-grained feature representation to the model. These
fine-grained details significantly improve the classification
performance of the model.

Subsequently, the fusion of the GSA and MAF branches
further boosts the classification performance, as evidenced
by the results of Case 3. Compared to using MAF alone,
the model’s performance shows a marked improvement, with
increases of 1.96%, 1.10%, 0.61%, and 0.64% on four datasets,
respectively. This underscores the effective integration of the
proposed convolutional (MAF) and graph (GSA) branches.
Notably, the fine-grained information provided by the MAF
branch offers a more reliable basis for the model’s classifica-
tion decisions, while the GSA branch aids in filtering out less
crucial features, thereby enhancing the model’s robustness.

Furthermore, Cases 4 and 5 verify the efficacy of the
GTS strategy when paired with either the GSA or MAF
branch. Regardless of the partner branch, GTS consistently
yields notable performance gains. Notably, the combination
of the MAF branch and GTS strategy achieves the best
experimental outcomes. Compared to using MAF alone, the
model experiences improvements of 2.61%, 1.29%, 0.73%,
and 1.53% on the four datasets, respectively. This performance
enhancement even surpasses achieved by combining GSA and
MAF, underscoring the effectiveness of the GTS strategy,
which improves model performance by introducing samples
at opportune moments during training.

Finally, in Case 6, the model incorporates both branches
and adopts the GTS training strategy. Under these conditions,
the model achieves the best classification performance among
all six experiments. Compared to Experiment 3 without GTS,
the model exhibits improvements of 0.8%, 0.77%, 0.28%, and
1.70% on the four datasets, respectively.

In this section, we validate the effectiveness of the three
modules in the proposed method. The experimental data adopts
OA as the evaluation metric, and the results are shown in
Table IV.

The primary motivation behind the design of GSA is to
alleviate the limitation of GAT, which is restricted to focusing
solely on neighboring nodes. MHSA, on the other hand, excels
at capturing dependencies between any two positions within
a sequence. Therefore, combining GAT and MHSA is theo-
retically feasible. To validate this hypothesis, we conducted
in-depth evaluations of GSA.
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Fig. 10. Comparison of GSA, GAT, and GAT + SE in OA.

Fig. 11. Comparison of GSA, GAT, and GAT + SE in AA.

Fig. 12. Comparison of GSA, GAT, and GAT + SE in κ × 100.

Experimental results (see Figs. 10–12) present a comparison
of GSA, GAT, and its variant across multiple datasets in terms
of OA, AA, and κ × 100. The results demonstrate that GSA
consistently outperforms GAT on all datasets. Moreover, the
combination of GAT and SE significantly underperforms both
GSA and GAT. Especially, on the LK dataset, GAT + SE
achieves an AA of only 49.62%, a 25.33% decrease compared
to GAT. These experimental results fully validate the effective-
ness of GSA and indicate that combining GAT with MHSA is
not a simple superposition or arbitrary selection. By integrating
GAT’s capability in modeling local relationships with MHSA’s
ability to capture global dependencies, GSA achieves a more
comprehensive graph representation learning.

D. Quantitative Experiments

In this section, we conducted a quantitative evaluation of
the proposed method and the comparison methods on four

datasets. The experimental results, as shown in Tables V–VIII,
demonstrate that the proposed method exhibits significant
advantages across all four datasets.

Specifically, although HybridSN combines 2-D and 3-D
convolutions, it suffers from a slight lack of classification
performance due to the absence of an attention mechanism.
DTAN, on the other hand, introduces an attention module
to enable the network to capture the importance of different
features more accurately, thus outperforming HybridSN. GNet
explores heterogeneous spatial and spectral features from an
anisotropic perspective and achieves good performance by
fusing low-level features and high-level semantic features
across layers. SF primarily focuses on spectral features, paying
insufficient attention to spatial features, leading to subop-
timal performance. In contrast, SSFTT achieves relatively
good classification results by combining convolutions and
feature tokenizers to extract both low- and high-level semantic
features.

Methods that combine GNNs and CNNs have generally
demonstrated superior performance. CEGCN, by combining
GCN and CNN, fuses superpixels and pixels, achieving excel-
lent results. WFCG, AMGCFN, and the proposed method
adopt a similar structure. WFCG, building upon CEGCN,
replaces GCN with GAT to alleviate the limitations of GCN in
handling directed graphs and introduces an attention module,
thereby further improving performance. AMGCFN constructs
a multihop GCN and a multiscale CNN, providing new
insights for research in this field and achieving outstanding
performance. In contrast, the dynamic GCN in FDGC fails to
demonstrate satisfactory classification performance.

Next, the proposed method is analyzed in this section.
On the IP dataset, the proposed method outperforms the best
comparison method by 1.16%, 2.48%, and 1.31% in OA, AA,
and κ × 100 metrics, respectively. In addition, the proposed
GS-GraphSAT achieves optimal performance in 11 out of
16 classes. Especially, for the seventh and ninth classes, the
total number of samples for these two classes is quite small.
The accuracy of these two classes using the proposed method
is as high as 98.43% and 98.35%, which exceed that of
CEGCN and AMGCFN by 4.65% and 1.07%, respectively.
This once again proves the feasibility of alleviating the prob-
lem of sample limitation by improving sample utilization.

On the UP dataset, GS-GraphSAT has also demonstrated
significant advantages. Compared to the best comparison
method, the three metrics have improved by 0.75%, 1.22%,
and 1.00%, respectively. In the optimal class, GS-GraphSAT
achieved the best performance in six out of nine classes.
On the LK dataset, the proposed method still has advan-
tages. Compared to the best comparison method, the three
metrics are 0.63%, 1.41%, and 0.82% higher, respectively,
and GS-GraphSAT leads in four out of nine classes. On the
HT dataset, the three metrics were 1.70%, 1.94%, and 1.83%
higher, respectively, and GS-GraphSAT achieved optimal per-
formance in 11 out of 15 classes.

E. Comparison of Running Time and Model Complexity

To comprehensively evaluate the performance of each
method, we conducted a quantitative analysis of their running
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TABLE V
CLASSIFICATION PERFORMANCE OBTAINED BY DIFFERENT METHODS FOR THE IP DATASET (OPTIMAL RESULTS ARE BOLDED)

TABLE VI
CLASSIFICATION PERFORMANCE OBTAINED BY DIFFERENT METHODS FOR THE UP DATASET (OPTIMAL RESULTS ARE BOLDED)

time and model complexity, as shown in Table IX. Methods
employing superpixels and pixel fusion demonstrated signif-
icant advantages in terms of time consumption, primarily
attributed to their full-pixel input approach, which eliminates
the overhead of batch training.

Among the methods combining GNN and CNN, the pro-
posed model consumed the most training time but performed
the best. Due to the lack of attention mechanisms, the CEGCN
model had the shortest training time but relatively average

performance. The AMGCFN model exhibited the best testing
time and relatively good performance. Although the proposed
model had a slightly longer training time, it demonstrated
significant advantages in classification performance.

On the other hand, the HybridSN and FDGC models have
the highest model complexity, while the GNet model has the
fewest parameters. The computational cost of our proposed
model is relatively high due to the nature of the multihead
attention mechanism.
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TABLE VII
CLASSIFICATION PERFORMANCE OBTAINED BY DIFFERENT METHODS FOR THE LONGKOU DATASET (OPTIMAL RESULTS ARE BOLDED)

TABLE VIII
CLASSIFICATION PERFORMANCE OBTAINED BY DIFFERENT METHODS FOR THE HT DATASET (OPTIMAL RESULTS ARE BOLDED)

Experimental results showed that the proposed model
achieved a good balance between performance and efficiency.
Although running time and model complexity are not partic-
ularly low, it could more accurately identify ground object
classes in complex scenarios, especially for small sample
regions.

F. Comparison of Classification Maps

This section visually demonstrates the superiority of the
proposed method by comparing classification maps across
four datasets with other methods. As shown in Figs. 13–16,

in regions with labeled samples, models combining GNNs and
CNNs, including the proposed method, consistently outper-
form other methods, aligning with the quantitative results in
Tables V–VIII. However, the true performance of a model
should be evaluated based on its predictions in unlabeled
regions.

We selected specific regions from the UP and HT datasets,
zoomed in, and created pseudocolor maps. In the mixed
region of “Meadows” and “Bare Soil” in the UP dataset,
the proposed method clearly preserves edge information and
accurately distinguishes between the two land cover types,
especially for the “Meadows” mixed within “Bare Soil.”
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TABLE IX
COMPARISON OF RUNNING TIME AND COMPLEXITY OF VARIOUS METHODS ON FOUR DATASETS (OPTIMAL RESULTS ARE BOLDED)

Fig. 13. Classification maps obtained by different methods on the IP dataset. (a)–(k) Ground truth, HybridSN, DTAN, GNet, SF, SSFTT, CEGCN, FDGC,
WFCG, AMGCFN, and proposed.

In contrast, other GNN-based comparison methods perform
poorly. Notably, CEGCN completely fails to identify “Bare
Soil.” While HybridSN can identify “Bare Soil,” it cannot
distinguish the “Meadows” within it. DTAN and SSFTT
have incomplete classification map edges and overall poor
performance. Although SF preserves edges, its classification
results are chaotic.

In the mixed region of “Healthy grass” and “Parking Lot
1” in the HT dataset, almost all methods can accurately
predict “Healthy grass,” but their performance on the unlabeled
“Parking Lot 1” region varies significantly. HybridSN, DTAN,
and AMGCFN incorrectly predict the “Residential” class in

the lower right corner. Other baseline models fail to identify
the “Running Track” surrounded by “Parking Lot 1.”

These experimental results further validate the robustness
of our proposed method. Even in regions with sparse samples,
our proposed method can accurately capture subtle differences
between land cover types, thereby achieving more precise
classification results.

G. Comparison of Confusion Matrices

This section visually demonstrates the superiority of the pro-
posed method in classification tasks by comparing confusion
matrices on the IP and UP datasets. As shown in Fig. 17, our
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Fig. 14. Classification maps obtained by different methods on the UP dataset. (a)–(k) Ground truth, HybridSN, DTAN, GNet, SF, SSFTT, CEGCN, FDGC,
WFCG, AMGCFN, and proposed.

Fig. 15. Classification maps obtained by different methods on the LK dataset. (a)–(k) Ground truth, HybridSN, DTAN, GNet, SF, SSFTT, CEGCN, FDGC,
WFCG, AMGCFN, and proposed.

method exhibits the fewest misclassifications on both datasets
compared to DTAN, SSFTT, and WFCG.

Specifically, on the IP dataset, DTAN, SSFTT, and WFCG
suffer from significant confusion in multiple classes. For
instance, DTAN misclassifies 8% of samples in class 7 as
class 5. SSFTT exhibits a more complex situation, with 18%
misclassifications in both classes 9 and 12. Although WFCG
shows some improvement, it still misclassifies 9% of samples
in class 12. In contrast, the proposed method has significantly
fewer misclassifications, with only 4% misclassifications in the
most confused class 4.

Similarly, on the UP dataset, DTAN and SSFTT have more
severe confusion, especially DTAN with 28% misclassifica-
tions in class 8. While WFCG shows some improvement,
it still misclassifies 4% of samples in class 8. The proposed
method consistently achieves the lowest confusion rate on the
UP dataset.

These experimental results strongly support the superior
classification accuracy of the proposed method. Compared to
other methods, our method can more effectively distinguish
between different classes, especially demonstrating stronger

robustness in scenarios with highly similar or overlapping
classes.

H. Comparison of Robustness

Spectral data often suffer from various degradations, noise,
and variations during the imaging process, which can sig-
nificantly degrade data quality and subsequently impact the
performance of classifiers [59], [60], [61]. To verify the robust-
ness of the proposed method in noisy environments, we added
different proportions of Gaussian noise to the IP and UP
datasets. Experimental results shown in Fig. 18 demonstrate
that our proposed method exhibits stronger robustness in terms
of three evaluation metrics (OA, AA, and κ × 100).

Specifically, as the level of Gaussian noise increases,
the performance of most comparison methods fluctuates
significantly, especially on the IP dataset. For example,
the performance of the CEGCN method drops significantly
after introducing 20% Gaussian noise, with the three met-
rics decreasing by approximately 10%, 20%, and 10%,
respectively. In contrast, our method maintains high accuracy
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Fig. 16. Classification maps obtained by different methods on the LK dataset. (a)–(k) Ground truth, HybridSN, DTAN, GNet, SF, SSFTT, CEGCN, FDGC,
WFCG, AMGCFN, and proposed.

Fig. 17. Comparison of confusion matrices of different methods on IP and UP datasets (from top to bottom). (a) and (e) DTAN, (b) and (f) SSFTT, (c) and
(g) WFCG, and (d) and (h) proposed.

even at the same noise level, demonstrating its robustness to
noise. Similarly, on the UP dataset, the performance of DTAN
and SSFTT declines more significantly. Especially for SSFTT,
the decrease in the AA metric after introducing 20% noise is
much larger than that of DTAN. Our proposed method also
exhibits strong robustness on the UP dataset, with less impact
from noise.

Experimental results show that the proposed method
exhibits stronger robustness in complex noisy environments,

effectively suppressing the impact of noise on classification
results and maintaining high classification accuracy.

I. Comparison of Heatmaps

To visualize the roles of the proposed GSA and MAF mod-
ules more intuitively, we conducted heatmap visualizations on
the IP and UP datasets, as shown in Fig. 18.

Fig. 19(a) and (e) presents the heatmaps of a model con-
taining only a single-branch depthwise separable convolution.
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Fig. 18. Comparison of the robustness of different metrics on the IP and UP datasets (from top to bottom). (a) and (d) OA, (b) and (e) AA, and (c) and
(f) κ × 100.

Fig. 19. Comparison of heatmaps of different modules on the IP and UP datasets (from top to bottom). (a) and (e) Depthwise separable convolution, (b) and
(f) MAF, (c) and (g) GSA, and (d) and (h) GSA + MAF.

It can be observed that the model has a weaker ability to
capture local details, and the heatmap responses are rela-
tively sparse. Fig. 19(b) and (f) shows the heatmaps of the
pixel-based MAF branch. It is evident that MAF excels in
extracting local detail features, with richer heatmap responses.
This indicates that the MAF module is highly effective in
extracting fine-grained features.

Fig. 19(c) and (g) presents the heatmaps of the GSA branch.
The two heatmaps show some block effects because they
are the results of ablation experiments conducted using the
proposed GSA alone. The GSA branch takes superpixels as
its basic units. Consequently, the heatmaps are presented at
the superpixel level, visually appearing as larger pixel blocks.
Moreover, it can be observed that the heatmaps lack many
local details and reflect an overview of the features. This
demonstrates that the GSA module is more adept at extracting

coarse-grained information but falls short in capturing local
features. The introduction of the MAF module is precisely to
compensate for the deficiency of the GSA module in local
feature extraction.

Fig. 19(d) and (h) shows the heatmaps of the fused GSA
and MAF modules. It can be observed that the fused model
not only captures rich local details but also exhibits stronger
heatmap responses in regions with labeled samples. This fully
demonstrates that the fusion of GSA and MAF modules can
effectively extract features and improve the model’s represen-
tational capacity.

IV. CONCLUSION

To alleviate the problem of limited samples in HSIC,
this article proposes a GS-GraphSAT. This method deeply
explores the correlations between graph nodes through the

Authorized licensed use limited to: Harbin Engineering Univ Library. Downloaded on December 07,2024 at 01:33:49 UTC from IEEE Xplore.  Restrictions apply. 



ZHU et al.: GREEDY STRATEGY GUIDED GRAPH SELF-ATTENTION NETWORK FOR FEW-SHOT HSIC 5539620

GSA mechanism and effectively extracts local detail features
of the image using the MAF module. In addition, the introduc-
tion of GTS can timely supplement samples during the training
process, improving the efficiency of sample utilization. The
experimental results on multiple datasets show that the pro-
posed method outperforms some state-of-the-art methods in
terms of classification accuracy and robustness. Although this
method has shown good performance, its complexity still
needs to be optimized. Future research will focus on exploring
lighter network architectures to reduce model complexity
while ensuring performance.
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